Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Inflammation ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700791

RESUMO

Periodontitis, characterized by progressive alveolar bone destruction, leads to the loss of attachment and stability of the affected teeth. Macrophages, especially the proinflammatory M1 subtype, are key in periodontitis pathogenesis, driving the disease's inflammatory and destructive processes. Despite existing insight into their involvement, comprehensive understanding of the underlying molecular mechanisms remains limited. TRPV1 is a non-selective cation channel protein and is known to regulate cellular function and homeostasis in macrophages. Our research objective was to investigate the impact of TRPV1 on the proinflammatory attributes of M1 macrophages in periodontal tissues, exploring potential mechanistic pathways. A mouse model of periodontitis was established using Porphyromonas gingivalis inoculation and ligature application around the maxillary second molar. Immunohistological analysis showed a significant reduction in macrophage TRPV1 expression in periodontitis-induced mice. Treatment with capsaicin, a TRPV1 agonist, was observed to effectively elevate TRPV1 expression in these macrophages. Furthermore, micro-computed tomography analysis revealed a marked decrease in alveolar bone resorption in the capsaicin -treated group, compared with vehicle and healthy control groups. Our in vitro findings show that capsaicin treatment successfully attenuated LPS-induced TNF-α and IL-6 production in macrophages, mediated through NRF2 activation, consequently reducing intracellular ROS levels. These findings suggest that TRPV1 agonists, through modulating M1 macrophage activity and up-regulating TRPV1, could be a novel therapeutic approach in periodontal disease management.

2.
Reproduction ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38670156

RESUMO

Oogonial stem cells (OSCs) are a type of germ stem cell present in the adult ovary. They have the ability to self-renew through mitosis and differentiate into oocytes through meiosis. We have previously identified a population of OSCs in chicken ovary, but the underlying mechanism control their activation and proliferation were unclear. In this study, we observed that OSCs showed robust proliferation when cultured on a layer of chicken embryo fibroblasts (CEF), suggesting that CEF may secrete certain crucial factors that activate OSC proliferation. We further detected Transforming Growth Factor beta 1 (TGF-ß1) as a potent signaling molecule to promote OSC proliferation. Additionally, we revealed the signaling pathways that play important roles in the downstream of TGF-ß1-induced OSC proliferation. These findings provide insights into the mechanisms underlying OSC proliferation in chickens and offer a foundation for future research on in situ activation of OSC proliferation in ovary and improvement of egg-laying performance in chickens.

3.
Plants (Basel) ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674548

RESUMO

Bromus japonicus is a common monocot weed that occurs in major winter wheat fields in the Huang-Huai-Hai region of China. Pyroxsulam is a highly efficient and safe acetolactate synthase (ALS)-inhibiting herbicide that is widely used to control common weeds in wheat fields. However, B. japonicus populations in China have evolved resistance to pyroxsulam by different mutations in the ALS gene. To understand the resistance distribution, target-site resistance mechanisms, and cross-resistance patterns, 208 B. japonicus populations were collected from eight provinces. In the resistant population screening experiment, 59 populations from six provinces showed different resistance levels to pyroxsulam compared with the susceptible population, of which 17 B. japonicus populations with moderate or high levels of resistance to pyroxsulam were mainly from the Hebei (4), Shandong (4) and Shanxi (9) Provinces. Some resistant populations were selected to investigate the target site-resistance mechanism to the ALS-inhibiting herbicide pyroxsulam. Three pairs of primers were designed to amplify the ALS sequence, which was assembled into the complete ALS sequence with a length of 1932 bp. DNA sequencing of ALS revealed that four different ALS mutations (Pro-197-Ser, Pro-197-Thr, Pro-197-Phe and Asp-376-Glu) were found in 17 moderately or highly resistant populations. Subsequently, five resistant populations, QM21-41 with Pro-197-Ser, QM20-8 with Pro-197-Thr and Pro-197-Phe, and QM21-72, QM21-76 and QM21-79 with Asp-376-Glu mutations in ALS genes, were selected to characterize their cross-resistance patterns to ALS inhibitors. The QM21-41, QM20-8, QM21-72, QM21-76 and QM21-79 populations showed broad-spectrum cross-resistance to pyroxsulam, mesosulfuron-methyl and flucarbazone-sodium. This study is the first to report evolving cross-resistance to ALS-inhibiting herbicides due to Pro-197-Phe mutations in B. japonicus.

4.
Plant J ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526880

RESUMO

Rice (Oryza sativa L.) is a short-day plant whose heading date is largely determined by photoperiod sensitivity (PS). Many parental lines used in hybrid rice breeding have weak PS, but their F1 progenies have strong PS and exhibit an undesirable transgressive late-maturing phenotype. However, the genetic basis for this phenomenon is unclear. Therefore, effective methods are needed for selecting parents to create F1 hybrid varieties with the desired PS. In this study, we used bulked segregant analysis with F1 Ningyou 1179 (strong PS) and its F2 population, and through analyzing both parental haplotypes and PS data for 918 hybrid rice varieties, to identify the genetic basis of transgressive late maturation which is dependent on dominance complementation effects of Hd1, Ghd7, DTH8, and PRR37 from both parents rather than from a single parental genotype. We designed a molecular marker-assisted selection system to identify the genotypes of Hd1, Ghd7, DTH8, and PRR37 in parental lines to predict PS in F1 plants prior to crossing. Furthermore, we used CRISPR/Cas9 technique to knock out Hd1 in Ning A (sterile line) and Ning B (maintainer line) and obtained an hd1-NY material with weak PS while retaining the elite agronomic traits of NY. Our findings clarified the genetic basis of transgressive late maturation in hybrid rice and developed effective methods for parental selection and gene editing to facilitate the breeding of hybrid varieties with the desired PS for improving their adaptability.

5.
J Transl Med ; 22(1): 222, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429821

RESUMO

BACKGROUND: Colonoscopy is a classic diagnostic method with possible complications including abdominal pain and diarrhoea. In this study, gut microbiota dynamics and related metabolic products during and after colonoscopy were explored to accelerate gut microbiome balance through probiotics. METHODS: The gut microbiota and fecal short-chain fatty acids (SCFAs) were analyzed in four healthy subjects before and after colonoscopy, along with seven individuals supplemented with Clostridium butyricum. We employed 16S rRNA sequencing and GC-MS to investigate these changes. We also conducted bioinformatic analysis to explore the buk gene, encoding butyrate kinase, across C. butyricum strains from the human gut. RESULTS: The gut microbiota and fecal short-chain fatty acids (SCFAs) of four healthy subjects were recovered on the 7th day after colonoscopy. We found that Clostridium and other bacteria might have efficient butyric acid production through bioinformatic analysis of the buk and assessment of the transcriptional level of the buk. Supplementation of seven healthy subjects with Clostridium butyricum after colonoscopy resulted in a quicker recovery and stabilization of gut microbiota and fecal SCFAs on the third day. CONCLUSION: We suggest that supplementation of Clostridium butyricum after colonoscopy should be considered in future routine clinical practice.


Assuntos
Clostridium butyricum , Microbioma Gastrointestinal , Microbiota , Humanos , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ácidos Graxos Voláteis/metabolismo , Colonoscopia , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo
6.
Postgrad Med J ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38449066

RESUMO

BACKGROUND: The diagnosis of myasthenia gravis (MG) in children remains difficult. Circulating small extracellular vesicle (sEV)-derived miRNAs (sEV-miRNAs) have been recognized as biomarkers of various diseases and can be excreted by different cell types. These biomarker candidates also play a vital role in autoimmune diseases via intercellular communication. METHODS: In the present study, we used sEV isolation and purification methods to extract the plasma-derived sEV-miRNAs from children with MG and healthy controls. A small RNA sequencing analysis confirmed the miRNA expression features in plasma-derived sEVs from MG patients. The miRNA expression analysis in vitro was determined using microarray analysis. The enrichment and network analyses of altered sEV-miRNAs were performed using miRNA databases and Database for Annotation, Visualization, and Integrated Discovery website. Quantitative real-time polymerase chain reaction was performed for validation of sEV-miRNA. The diagnostic power of altered sEV-miRNAs was evaluated using receiver operating characteristic curve analyses. RESULTS: Twenty-four sEV-miRNAs with altered expression level were identified between groups by DESeq2 method. The miRNAs were extracted from the sEVs, which were isolated from human primary skeletal muscle cell culture treated with mAb198. The target genes and enriched pathways of sEV-miRNAs partially overlapped between cell supernatant and plasma samples. The significantly downregulated miR-143-3p was validated in quantitative real-time polymerase chain reaction analysis. CONCLUSIONS: For the first time, we report that plasma-derived sEV-miRNAs may act as novel circulating biomarkers and therapeutic targets in pediatric MG.

7.
Gut Microbes ; 16(1): 2313770, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38334087

RESUMO

The widespread prevalence of Helicobacter pylori infection, particularly in China, contributes to the development of gastrointestinal diseases. Antibiotics have limitations, including adverse reactions and increased antibiotic resistance. Therefore, identification of novel gastrogenic probiotics capable of surviving the acidic gastric environment and effectively combating H. pylori infection has potential in restoring gastric microbiota homeostasis. Five novel strains of human gastrogenic Weizmannia coagulans (BCF-01-05) were isolated from healthy gastric mucosa and characterized using 16S rDNA identification. Acid resistance, H. pylori inhibition, and adherence to gastric epithelial cells were evaluated in in-vitro experiments and the molecular mechanism explored in in-vivo experiments. Among the gastric-derived W. coagulans strains, BCF-01 exhibited the strongest adhesion and H. pylori inhibition, warranting further in-vivo safety evaluation. Through 16S rRNA sequencing of a mouse model, BCF-01 was determined to significantly restore H. pylori-associated gastric dysbiosis and increase the abundance of potential probiotic bacteria. Furthermore, BCF-01 enhanced mucosal tight junction protein expression and inhibited the TLR4-NFκB-pyroptosis signaling pathway in macrophages, as demonstrated by qRT-PCR and western blotting.These findings highlight the potential of BCF-01 in the prevention and control of H. pylori infection. Specifically, treatment with BCF-01 effectively restored gastric microecology and improved H. pylori-mediated mucosal barrier destruction while reducing inflammation through inhibition of the TLR4-NFκB-pyroptosis signaling pathway in macrophages. BCF-01 is a promising alternative to traditional triple therapy for H. pylori infections, offering minimal side effects with high suitability for high-risk individuals.


Assuntos
Microbioma Gastrointestinal , Infecções por Helicobacter , Helicobacter pylori , Probióticos , Animais , Camundongos , Humanos , Infecções por Helicobacter/metabolismo , Helicobacter pylori/genética , RNA Ribossômico 16S/genética , Receptor 4 Toll-Like , Mucosa Gástrica/metabolismo , Controle de Infecções
8.
Plant Cell Rep ; 43(2): 30, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195770

RESUMO

KEY MESSAGE: Sucrose invertase activity is positively related to osmotic and salt stress resistance in peanut. Sucrose invertases (INVs) have important functions in plant growth and response to environmental stresses. However, their biological roles in peanut are still not fully revealed. In this research, we identified 42 AhINV genes in the peanut genome. They were highly conserved and clustered into three groups with 24 segmental duplication events occurred under purifying selection. Transcriptional expression analysis exhibited that they were all ubiquitously expressed, and most of them were up-regulated by osmotic and salt stresses, with AhINV09, AhINV23 and AhINV19 showed the most significant up-regulation. Further physiochemical analysis showed that the resistance of peanut to osmotic and salt stress was positively related to the high sugar content and sucrose invertase activity. Our results provided fundamental information on the structure and evolutionary relationship of INV gene family in peanut and gave theoretical guideline for further functional study of AhINV genes in response to abiotic stress.


Assuntos
Arachis , Açúcares , Arachis/genética , beta-Frutofuranosidase/genética , Estresse Salino , Sacarose
9.
Poult Sci ; 103(1): 103281, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992616

RESUMO

Salmonella enterica is a zoonotic bacterium that not only causes serious economic losses to the livestock and poultry industries but also seriously endangers human health. Long-term indiscriminate use of antibiotics has led to drug resistance in Salmonella, and thus the identification of alternatives to antibiotics is crucial. In this study, the effects of puerarin on the S. enterica-infected chickens were investigated. A total of 360 chicks were randomly assigned as the control group (CON), the S. enterica group (S), and puerarin-treatment group (P). Chicks in the P group were fed the basal diet supplemented with 50 (P50), 100 (P100), 200 (P200), and 400 (P400) mg/kg puerarin, respectively. It was found that puerarin treatment markedly altered the serum activities of aspartate aminotransferase (AST), alanine transaminase (ALT), and superoxide dismutase (SOD), together with the malondialdehyde (MDA) and total antioxidant capacity (T-AOC) contents in the serum. The mRNA expression of IL-6, IL-1ß, TNF-α, Bcl-2, and caspase-8 in the livers of S. enterica-infected chicks was increased after infection but significantly reduced after treatment with puerarin. Histologic analysis showed that puerarin effectively mitigated morphological damage in the liver caused by S. enterica. Proteomic analysis revealed that S. enterica infection led to metabolic disorders in the liver, resulting in oxidative stress, increased inflammation, and significantly elevated levels of hepatocellular carcinoma biomarkers. The findings of the filtered sequencing were verified by using quantitative PCR (qPCR). Treatment with 100 mg/mL puerarin thus effectively alleviated disordered liver metabolism, reduced inflammation and oxidative damage and significantly reduced the levels of hepatocellular carcinoma biomarkers in the liver. The results suggest that puerarin has the potential to replace antibiotics to control Salmonella infection in poultry and thus improve food safety.


Assuntos
Galinhas , Isoflavonas , Fígado , Salmonelose Animal , Animais , Antibacterianos/metabolismo , Biomarcadores/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/microbiologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/veterinária , Galinhas/metabolismo , Galinhas/microbiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/microbiologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/microbiologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/veterinária , Estresse Oxidativo , Proteômica , Salmonella/efeitos dos fármacos , Inocuidade dos Alimentos , Salmonelose Animal/complicações , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/microbiologia , Isoflavonas/administração & dosagem
10.
Environ Sci Technol ; 57(51): 21823-21834, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38078887

RESUMO

The ubiquitous presence of pharmaceuticals and personal care products (PPCPs) in environments has aroused global concerns; however, minimal information is available regarding their multimedia distribution, bioaccumulation, and trophic transfer in marine environments. Herein, we analyzed 77 representative PPCPs in samples of surface and bottom seawater, surface sediments, and benthic biota from the Bohai Sea. PPCPs were pervasively detected in seawater, sediments, and benthic biota, with antioxidants being the most abundant PPCPs. PPCP concentrations positively correlated between the surface and bottom water with a decreasing trend from the coast to the central oceans. Higher PPCP concentrations in sediment were found in the Yellow River estuary, and the variations in the physicochemical properties of PPCPs and sediment produced a different distribution pattern of PPCPs in sediment from seawater. The log Dow, but not log Kow, showed a linear and positive relationship with bioaccumulation and trophic magnification factors and a parabolic relationship with biota-sediment accumulation factors. The trophodynamics of miconazole and acetophenone are reported for the first time. This study provides novel insights into the multimedia distribution and biomagnification potential of PPCPs and suggests that log Dow is a better indicator of their bioaccumulation and trophic magnification.


Assuntos
Cosméticos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Água do Mar/química , Cosméticos/análise , Preparações Farmacêuticas , China
11.
Pestic Biochem Physiol ; 197: 105683, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072540

RESUMO

Wild Brassica juncea is a troublesome weed that infests wheat fields in China. Two suspected wild B. juncea populations (19-5 and 19-6) resistant to acetolactate synthase (ALS) inhibitors were collected from wheat fields in China. To clarify their resistance profiles and resistance mechanism, the resistance levels of populations 19-5 and 19-6 to ALS-inhibiting herbicides and their underlying target-site resistance mechanism were investigated. The results showed that the 19-5 population exhibited resistance to tribenuron-methyl, pyrithiobac­sodium and florasulam, while the 19-6 population was resistant to tribenuron-methyl, pyrithiobac­sodium, imazethapyr and florasulam. Using the homologous cloning method, two ALS genes were identified in wild B. juncea, with one gene (ALS1) encoding 652 amino acids and the other (ALS2) encoding 655 amino acids. Pro-197-Arg mutation on ALS2 and Trp-574-Leu mutation on ALS1, together with the combination of these two mutations in a single plant, were observed in both 19-5 and 19-6 populations. ALS2 enzymes carrying the Pro-197-Arg mutation were cross-resistant to tribenuron-methyl, pyrithiobac­sodium, imazerthapyr and florasulam, with resistance index (RI) values of 6.23, 32.81, 7.97 and 1162.50, respectively. Similarly, ALS1 enzymes with Trp-574-leu substitutions also displayed high resistance to these four herbicides (RI values ranging from 132.61 to 3375.00). In addition, the combination of Pro-197-Arg (ALS2) and Trp-574-Leu (ALS1) mutations increased the resistance level of the ALS enzyme to ALS inhibitors, with its RI values 3.83-214.19, 6.88-37.34, 1.91-31.82 and 2.03-5.90-fold higher than a single mutation for tribenuron-methyl, pyrithiobac­sodium, imazerthapyr and florasulam, respectively. Collectively, Pro-197-Arg mutation on ALS2, Trp-574-Leu mutation on ALS1 and the combination of Pro-197-Arg (ALS2) and Trp-574-Leu (ALS1) mutations in wild B. juncea could endow broad-spectrum resistance to ALS inhibitors, which might provide guides for establishing effective strategies to prevent or delay such resistance evolution in this weed.


Assuntos
Acetolactato Sintase , Herbicidas , Acetolactato Sintase/metabolismo , Mostardeira/genética , Mostardeira/metabolismo , Herbicidas/farmacologia , Mutação , Aminoácidos , Sódio , Resistência a Herbicidas/genética
12.
Cancer Lett ; 579: 216465, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38084702

RESUMO

Lung cancer is a highly heterogeneous malignancy, and despite the rapid development of chemotherapy and radiotherapy, acquired drug resistance and tumor progression still occur. Thus, it is urgent to identify novel therapeutic targets. Our research aims to screen novel biomarkers associated with the prognosis of lung carcinoma patients and explore the potential regulatory mechanisms. We obtained RNA sequencing (RNA-seq) data of lung cancer patients from public databases. Clinical signature analysis, weighted gene coexpression network analysis (WGCNA) and the random forest algorithm showed that C1q/tumor necrosis factor-related protein-6 (CTRP6) is a core gene related to lung cancer prognosis, and it was determined to promote tumor proliferation and metastasis both in vivo and in vitro. Mechanistically, silencing CTRP6 was determined to promote xCT/GPX4-involved ferroptosis through functional assays related to lipid peroxidation, Fe2+ concentration and mitochondrial ultrastructure. By performing interactive proteomics analyses in lung tumor cells, we identified the interaction between CTRP6 and suppressor of cytokine signaling 2 (SOCS2) leading to SOCS2 ubiquitination degradation, subsequently enhancing the downstream xCT/GPX4 signaling pathway. Moreover, significant correlations between CTRP6-mediated SOCS2 and ferroptosis were revealed in mouse models and clinical specimens of lung cancer. As inducing ferroptosis has been gradually regarded as an alternative strategy to treat tumors, targeting CTRP6-mediated ferroptosis could be a potential strategy for lung cancer therapy.


Assuntos
Ferroptose , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Adipocinas/metabolismo , Ferroptose/genética , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Prognóstico , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/metabolismo
13.
Genes (Basel) ; 14(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003021

RESUMO

The MADS-box family, a substantial group of plant transcription factors, crucially regulates plant growth and development. Although the functions of AGL12-like subgroups have been elucidated in Arabidopsis, rice, and walnut, their roles in grapes remain unexplored. In this study, we isolated VvAGL12, a member of the grape MADS-box group, and investigated its impact on plant growth and biomass production. VvAGL12 was found to localize in the nucleus and exhibit expression in both vegetative and reproductive organs. We introduced VvAGL12 into Arabidopsis thaliana ecotype Columbia-0 and an agl12 mutant. The resulting phenotypes in the agl12 mutant, complementary line, and overexpressed line underscored VvAGL12's ability to promote early flowering, augment plant growth, and enhance production. This was evident from the improved fresh weight, root length, plant height, and seed production, as well as the reduced flowering time. Subsequent transcriptome analysis revealed significant alterations in the expression of genes associated with cell-wall modification and flowering in the transgenic plants. In summary, the findings highlight VvAGL12's pivotal role in the regulation of flowering timing, overall plant growth, and development. This study offers valuable insights, serving as a reference for understanding the influence of the VvAGL12 gene in other plant species and addressing yield-related challenges.


Assuntos
Arabidopsis , Vitis , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitis/genética , Vitis/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Expressão Ectópica do Gene , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
14.
Theor Appl Genet ; 136(12): 239, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37930441

RESUMO

KEY MESSAGE: We developed an efficient promoter editing method to create different weak Ehd1 alleles in elite japonica rice variety ZJ8 with slightly delayed heading and improved yield for use in breeding. Heading date is an important agronomic trait of rice (Oryza sativa) that determines the planting areas and cultivation seasons of different varieties, thus affecting final yield. Early heading date 1 (Ehd1) is a major rice integrator gene in the regulatory network of heading date whose expression level is negatively correlated with heading date and grain yield. Some elite japonica varieties such as Zhongjia 8 (ZJ8) show very early heading with poor agronomic traits when planted in South China. This problem can be addressed by downregulating the expression of Ehd1. In this study, we analyzed the cis-regulatory elements in the Ehd1 promoter region. We then used CRISPR/Cas9-mediated editing to modify the Ehd1 promoter at multiple target sites in ZJ8. We rapidly identified homozygous allelic mutations in the T2 generation via long-read sequencing. We obtained several Ehd1 promoter mutants with different degrees of lower Ehd1 expression, delayed heading date, and improved yield-related traits. We developed an efficient promoter editing method to create different weak Ehd1 alleles for breeding selection. Using this method, a series of heading date materials from elite varieties can be created to expand the planting area of rice and improve grain yields.


Assuntos
Oryza , Oryza/genética , Melhoramento Vegetal , Regiões Promotoras Genéticas , Agricultura , Alelos , Grão Comestível/genética
15.
Theor Appl Genet ; 136(11): 227, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37851149

RESUMO

KEY MESSAGE: We clarify the influence of the genotypes of the heading date genes Hd1, Ghd7, DTH8, and PRR37 and their combinations on yield-related traits and the functional differences between different haplotypes. Heading date is a key agronomic trait in rice (Oryza sativa L.) that determines yield and adaptability to different latitudes. Heading date 1 (Hd1), Grain number, plant height, and heading date 7 (Ghd7), Days to heading on chromosome 8 (DTH8), and PSEUDO-RESPONSE REGULATOR 37 (PRR37) are core rice genes controlling photoperiod sensitivity, and these genes have many haplotypes in rice cultivars. However, the effects of different haplotypes at these genes on yield-related traits in diverse rice materials remain poorly characterized. In this study, we knocked out Hd1, Ghd7, DTH8, or PRR37, alone or together, in indica and japonica varieties and systematically investigated the agronomic traits of each knockout line. Ghd7 and PRR37 increased the number of spikelets and improved yield, and this effect was enhanced with the Ghd7 DTH8 or Ghd7 PRR37 combination, but Hd1 negatively affected yield. We also identified a new weak functional Ghd7 allele containing a mutation that interferes with splicing. Furthermore, we determined that the promotion or inhibition of heading date by different PRR37 haplotypes is related to PRR37 expression levels, day length, and the genetic background. For rice breeding, a combination of functional alleles of Ghd7 and DTH8 or Ghd7 and PRR37 in the hd1 background can be used to increase yield. Our study clarifies the effects of heading date genes on yield-related traits and the functional differences among their different haplotypes, providing valuable information to identify and exploit elite haplotypes for heading date genes to breed high-yielding rice varieties.


Assuntos
Oryza , Oryza/metabolismo , Melhoramento Vegetal , Fenótipo , Mutação , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/genética , Fotoperíodo
16.
Front Oncol ; 13: 1238332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849806

RESUMO

Background: Although many CTC isolation and detection methods can provide information on cancer cell counts, downstream gene and protein analysis remain incomplete. Therefore, it is crucial to develop a technology that can provide comprehensive information on both the number and profile of CTC. Methods: In this study, we developed a novel microfluidics-based CTC separation and enrichment platform that provided detailed information about CTC. Results: This platform exhibits exceptional functionality, achieving high rates of CTC recovery (87.1%) and purification (∼4 log depletion of WBCs), as well as accurate detection (95.10%), providing intact and viable CTCs for downstream analysis. This platform enables successful separation and enrichment of CTCs from a 4 mL whole-blood sample within 15 minutes. Additionally, CTC subtypes, selected protein expression levels on the CTC surface, and target mutations in selected genes can be directly analyzed for clinical utility using immunofluorescence and real-time polymerase chain reaction, and the detected PD-L1 expression in CTCs is consistent with immunohistochemical assay results. Conclusion: The microfluidic-based CTC enrichment platform and downstream molecular analysis together provide a possible alternative to tissue biopsy for precision cancer management, especially for patients whose tissue biopsies are unavailable.

17.
Front Plant Sci ; 14: 1271329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771491

RESUMO

Constitutive photomorpogenic dwarf (CPD) is a pivotal enzyme gene for brassinolide (BR) synthesis and plays an important role in plant growth, including increasing plant biomass and plant height, elongating cells, and promoting xylem differentiation. However, little is known about the function of the CPD gene in sugar beet. In the current study, we isolated CPD from Beta vulgaris L. (BvCPD), which encodes protein localized in the nucleus, cell membrane, and cell wall. BvCPD was strongly expressed in parenchyma cells and vascular bundles. The transgenic sugar beet overexpressing BvCPD exhibited larger diameter than that of the wild type (WT), which mainly owing to the increased number and size of parenchyma cells, the enlarged lumen and area of vessel in the xylem. Additionally, overexpression of BvCPD increased the synthesis of endogenous BR, causing changes in the content of endogenous auxin (IAA) and gibberellin (GA) and accumulation of cellulose and lignin in cambium 1-4 rings of the taproot. These results suggest that BvCPD can promote the biosynthesis of endogenous BR, improve cell wall components, promote the development of parenchyma cells and vascular bundle, thereby playing an important role in promoting the growth and development of sugar beet taproot.

18.
Front Oncol ; 13: 1200625, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731645

RESUMO

Objectives: Neoadjuvant chemoimmunotherapy is the optimal choice in the treatment of NSCLC; however, the optimal number of therapeutic cycles remains unclear. The primary aim of this study was to determine the optimal number of neoadjuvant therapeutic cycles in NSCLC. Methods: This study was a real-world clinical analysis that included patients who received neoadjuvant chemoimmunotherapy followed by surgery from January 2020 to August 2022. Patients were divided into two groups based on the number of therapeutic cycles: 2-cycle group and 3-4-cycles group. The primary endpoint was the major pathological response (MPR) rate. Results: A total of 251 patients were included: 150 in the 2-cycle group and 101 in the 3-4-cycles group. Baseline characteristics were well-balanced between the groups. The MPR in the 2-cycle group was 57.3% and not significantly different from that of 57.4% in the 3-4-cycles group (p=0.529). Thirty-two patients (31.7%) in the 3-4-cycles group underwent surgery > 42 days after the final cycle of neoadjuvant therapy, significantly more than the 24 patients (16.0%) in the 2-cycle group (p=0.003). The incidence of adverse events related to neoadjuvant therapy was higher in the 3-4-cycles vs 2-cycle groups (72.3% versus 58.0%, respectively; p=0.021), while the 2-cycle group had a higher rate of postoperative morbidities (28.0% versus 12.9%, respectively; p=0.004). Additionally, for patients with ≤ 44.2% regression in diameter on computed tomography after two cycles of treatment, the MPR rate was higher in the 3-4-cycles vs 2-cycle group (47.3% versus 29.9%, respectively; p=0.048). For cases with programmed death-ligand 1 expression, regarding tumor proportion score ≤ 10%, 3-4 cycles of neoadjuvant treatment increased the MPR rate compared with 2 cycles (37.5% versus 9.5%, respectively; p=0.041). Conclusion: Our data support the positive role of chemoimmunotherapy in the neoadjuvant treatment of NSCLC. Extending to 3-4 cycles instead of 2 cycles of neoadjuvant chemoimmunotherapy may improve the safety of surgery and result in a lower incidence of postoperative morbidities; however, the MPR rate may not increase significantly. CT re-evaluation during treatment and PD-L1 expression at initial diagnosis are potential indicators to guide the choice of the number of therapeutic cycles.

19.
PeerJ ; 11: e15938, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637160

RESUMO

Background: The tumour-node-metastasis (TNM) staging system is insufficient to precisely distinguish the long-term survival of patients who underwent pneumonectomy for primary lung cancer. Therefore, this study sought to identify determinants of disease-free (DFS) and overall survival (OS) for incorporation into web-based dynamic nomograms. Methods: The clinicopathological variables, surgical methods and follow-up information of 1,261 consecutive patients who underwent pneumonectomy for primary lung cancer between January 2008 and December 2018 at Sun Yat-sen University Cancer Center were collected. Nomograms for predicting DFS and OS were built based on the significantly independent predictors identified in the training cohort (n = 1,009) and then were tested on the validation cohort (n = 252). The concordance index (C-index) and time-independent area under the receiver-operator characteristic curve (AUC) assessed the nomogram's discrimination accuracy. Decision curve analysis (DCA) was applied to evaluate the clinical utility. Results: During a median follow-up time of 40.5 months, disease recurrence and death were observed in 446 (35.4%) and 665 (52.7%) patients in the whole cohort, respectively. In the training cohort, a higher C-reactive protein to albumin ratio, intrapericardial pulmonary artery ligation, lymph node metastasis, and adjuvant therapy were significantly correlated with a higher risk for disease recurrence; similarly, the independent predictors for worse OS were intrapericardial pulmonary artery and vein ligation, higher T stage, lymph node metastasis, and no adjuvant therapy. In the validation cohort, the integrated DFS and OS nomograms showed well-fitted calibration curves and yielded good discrimination powers with C-index of 0.667 (95% confidence intervals CIs [0.610-0.724]) and 0.697 (95% CIs [0.649-0.745]), respectively. Moreover, the AUCs for 1-year, 3-year, and 5-year DFS were 0.655, 0.726, and 0.735, respectively, and those for 3-year, 5-year, and 10-year OS were 0.741, 0.765, and 0.709, respectively. DCA demonstrated that our nomograms could bring more net benefit than the TNM staging system. Conclusions: Although pneumonectomy for primary lung cancer has brought encouraging long-term outcomes, the constructed prediction models could assist in precisely identifying patients at high risk and developing personalized treatment strategies to further improve survival.


Assuntos
Neoplasias Pulmonares , Segunda Neoplasia Primária , Humanos , Pneumonectomia , Nomogramas , Metástase Linfática , Neoplasias Pulmonares/cirurgia , Internet
20.
Materials (Basel) ; 16(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37629811

RESUMO

We propose a surface plasmon resonance (SPR) sensor based on the concave photonic crystal fiber (PCF) coated with molybdenum disulfide (MoS2) and Au layers, which can detect the refractive index (RI) of the analyte. The finite element method (FEM) was used to verify our design, and the loss spectra of the fundamental mode are calculated. Compared with the SPR sensor with only a Au layer, the wavelength sensitivity can be improved by from 3700 to 4400 nm/RIU. Our proposed sensor works in near-infrared band and has a wide RI range from 1.19 to 1.40. The influences of the geometrical parameters of PCF and the thicknesses of Au and MoS2 layers on the loss spectra are discussed in detail, and the maximum wavelength sensitivity of 5100 nm/RIU can be achieved. Meanwhile, a high resolution of 1.96 × 10-5 RIU and the largest FOM of 29.143 can be obtained. It is believed that our findings show the sensor's excellent potential in medical testing, unknown biological detection, environmental monitoring and organic chemical detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA